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46 Abstract
Prior research on policy-induced moral hazard effects in the auto insurance mar­
ket has focused on the impact of compulsory insurance, no-fault liability, and tort 
liability laws on traffic fatalities. In contrast, this paper examines the moral haz­
ard effect of a previously overlooked policy variable: minimum auto insurance 
coverage. We hypothesize that state-mandated auto insurance minimums may 
“over-insure” some drivers, lowering their incentives to drive carefully. Using a 
longitudinal panel of American states from 1982 to 2006, we find that policy- 
induced increases in auto insurance minimums are associated with higher traffic 
fatality rates, ceteris paribus.

Keywords: traffic fatalities, auto insurance, minimums, moral hazard

1 INTRODUCTION 
In the United States, compulsory insurance laws mandate that drivers must pur-
chase some minimal amount of liability coverage. These state-specific auto insur-
ance minimums have remained unchanged in nominal value in most states since 
their enactment in 1967. The required insurance minimums contain three separate 
numbers. The first number specifies the per-person amount of medical liability, 
the second number specifies the maximum amount of medical liability per acci-
dent, and the third number specifies the amount of property liability. For example, 
Alaska’s required auto insurance minimums of 50/100/25 (in thousands of dol-
lars) are some of the highest in the nation, while Mississippi’s insurance mini-
mums of 25/50/25 are some of the lowest. 

As the real value of these fixed insurance minimums continues to decline over time 
due to inflation, some drivers may find the reduced amount of insurance more 
appropriate for their risk level, while those who desire more coverage can easily 
choose to add more. In other words, the mandated auto-insurance minimum can be 
thought of as a price-floor, the binding value of which has been eroding over time 
due to inflation. In light of this, several states have increased their minimum liabil-
ity insurance amounts in recent years. This mandated increase in coverage may 
effectively over-insure some drivers, reducing their incentive to drive carefully. 
Economists have long hypothesized that some features of auto insurance policy can 
create a perverse incentive, an effect commonly known as moral hazard. 

To the best of our knowledge, this study is the first to examine whether the recent 
increases in state-level auto insurance minimums can increase the traffic fatality 
rate. The logic behind our hypothesis is rather simple: if the required insurance 
coverage exceeds the optimal amount preferred by some drivers, then they become 
over-insured and have less of an incentive to drive carefully. The expected result is 
a positive relationship between state traffic fatality rate and higher auto insurance 
minimums, holding everything else constant. We test for the presence of this moral 
hazard effect in a longitudinal panel of American states from 1982 to 2006. We find 
that the hypothesized moral hazard effect is statistically different from zero, but 
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47relatively small in magnitude: a one percent increase in the average state auto 

insurance minimum is associated with about 0.1 percent increase in the traffic fatal-
ity rate, ceteris paribus. Still, even this relatively small effect implies that increasing 
the average liability minimum by $6,000 would result in one extra traffic fatality, a 
questionable tradeoff given the average value of a statistical life of about $7 million. 
Our estimate is consistent with the recent findings showing significant improve-
ments in traffic safety and social welfare from less generous insurance coverage 
(Jeziorski, Krasnokutskaya and Ceccariniz, 2015; Weisburd, 2015).

2 LITERATURE REVIEW 
While insurance plays a valuable role in a market economy and may even be a 
viable alternative to government regulation according to Logue and Ben-Shahar 
(2012), it can be significantly undermined by asymmetric information. Early sem-
inal work by Arrow (1963), Akerlof (1970), and Pauly (1968, 1974) demonstrates 
that competitive insurance markets can be inefficient in the presence of asymmet-
ric information, which occurs when one party knows more about a product or 
service being traded than the other party and tries to gain from that knowledge. 
This can lead to adverse selection and moral hazard, both of which lower the 
social efficiency of a market. In the auto insurance market, asymmetric informa-
tion implies a positive correlation between a policyholder’s accident probability 
and insurance generosity (Rothschild and Stiglitz, 1976; Wilson, 1977). This pos-
itive correlation can be attributed to either adverse selection or moral hazard 
(Abbring et al., 2003). In the case of adverse selection, the free market is likely to 
under-provide insurance due to suboptimal risk allocations (Puelz and Snow, 
1994). Compulsory insurance laws are often viewed as the solution to the adverse 
selection problem that plagues the insurance market (Pauly, 1974). Compulsory 
insurance laws require that all drivers obtain insurance, thereby reducing insur-
ance risk and adverse selection. 

However, compulsory insurance laws may exacerbate the moral hazard problem 
if insurance premiums and coverage amounts do not properly reflect a customer’s 
risk level. Moral hazard occurs when individuals do not bear the full cost of their 
actions, giving them an incentive to act in a more reckless fashion. If widespread, 
this tendency increases the cost of providing insurance to all individuals. In the 
case of auto insurance, moral hazard may lead to non-trivial costs in terms of 
greater property damage and more frequent traffic collisions (Shavell, 1979; 
Holmstrom, 1979). Arrow (1970) and Pauly (1968) propose two partial solutions 
to the moral hazard problem in insurance: incomplete coverage or closer monitor-
ing (observing). Shavell (1979) argues that the optimal amount of coverage lies 
somewhere between full and partial coverage. Much of the following research has 
focused on reconciling the theoretical insights with empirical evidence.

In a seminal paper, Peltzman (1975) develops the famous risk compensation the-
ory where individuals seek some optimal level of risk, making them counteract 
the gains in safety (risk reduction) by driving more aggressively. For example, a 
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48 rise in seat belt usage may lead to more careless driving, potentially increasing 
traffic accidents and fatalities. Similarly, drivers in airbag-equipped vehicles 
might feel safer and drive less carefully as a result. Several studies have confirmed 
the so-called Peltzman compensation effect.1 For instance, Sen (2001) finds that 
Canadian mandatory seatbelt legislation did not reduce traffic fatalities by the 
predicted amount due to drivers offsetting some of the gains in safety from seat-
belt usage by driving more aggressively. Harless and Hoffer (2003) show that the 
rise in personal injury claims after airbag adoption can be attributed to moral 
hazard and vehicle ownership pattern. They also find that rental car drivers are 
much more likely to commit grievous acts than other drivers. Some of the most 
conclusive evidence on the Peltzman compensation effect comes from the study 
of micro-level NASCAR data by Sobel and Nesbit (2007), who find that safety 
improvements in NASCAR racing have led to more reckless driving. 

In contrast, the moral hazard effect stemming from auto insurance coverage has 
been more difficult to ascertain empirically. Abbring et al. (2003) demonstrate that 
a positive correlation between traffic fatalities and insurance coverage in static 
data can be interpreted as either moral hazard or adverse selection. Similarly, 
Cohen and Siegelman (2010) argue that the presence of a positive coverage-risk 
correlation in auto insurance markets can be indicative of both moral hazard and 
adverse selection because riskier drivers may buy more insurance (adverse selec-
tion), while more insurance coverage may also encourage reckless driving (moral 
hazard). Using dynamic experience-rated insurance data, Abbring, Chiappori and 
Pinquet (2003) claim to have been able to separate the moral hazard and adverse 
selection effects. Using non-parametric tests, they find no significant evidence of 
moral hazard in the French auto insurance market, but the coefficient’s sign for 
younger policy holders is consistent with the moral hazard hypothesis despite not 
being statistically significant. 

More recent studies, however, find increasing evidence of moral hazard in the auto 
insurance market. For example, Israel (2004) and Dionne et al. (2005) apply the 
Abbring, Chiappori and Pinquet (2003) methodology to longer data panels in the 
United States and Canada, respectively, and confirm the presence of moral hazard. 
Specifically, Dionne et al. show that the implementation of the new bonus-malus 
(experience-rating) scheme in Quebec’s automobile insurance industry has low-
ered the moral hazard effect as evidenced by fewer collisions and traffic viola-
tions. Abbring, Chiappori and Zavadil (2008) study dynamic incentives of experi-
ence-rated policy and find evidence of moral hazard in the Dutch auto insurance 
market. Using data from the Quebec public insurance plan, Dionne et al. (2011) 
also find evidence that accumulated demerit points incentivize safer driving due to 
the threat of driver’s license revocation. Furthermore, Dionne, Michaud and 
Dahchour (2013) use experience-rated, longitudinal survey data with dynamic 
information both on claims and accidents from France during the 1995-1997 pe-
riod and find evidence of moral hazard among a subgroup of policyholders with 

1 See Garbacz (1990a, 1990b, 1991, 1992); Risa (1994); Calkins and Zlatoper (2001).
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49less than 15 years of driving experience. This result suggests that more coverage 

for less experienced policyholders leads to a higher probability of a future acci-
dent, ceteris paribus. In their study, Dionne et al. also claim to be able to separate 
moral hazard from adverse selection and learning, noting that policyholders with 
less driving experience have a combination of learning and moral hazard effects. 
Weisburd’s (2015) instrumental variable analysis of Israeli employer-determined 
auto insurance data from the 2001-2008 period shows that a $100 reduction in 
accident costs for drivers results in a 1.7 percentage point increase in the probabil-
ity of an accident or, equivalently, a 10 percent increase in auto accidents. Simi-
larly, the Jeziorski, Krasnokutskaya and Ceccariniz (2015) analysis of data from a 
major Portuguese auto insurance company offers strong evidence of moral hazard. 
One of their key findings indicates that introducing a 20% deductible can reduce 
the annual number of accidents by 1,518. Their estimates suggest that switching 
from full to partial auto insurance coverage can significantly reduce the number of 
accidents and substantially improve social welfare. These findings are consistent 
with the standard theoretical conclusion that full insurance may not be optimal in 
the presence of moral hazard. 

In contrast to the aforementioned literature, the moral hazard hypothesis exam-
ined in our paper is most closely related to a separate body of research on the ag-
gregate-level safety effects of insurance policy changes. Several studies find that 
certain state auto insurance laws, like no-fault liability, may increase traffic colli-
sions via the moral hazard effect. In a pure no-fault liability system, policyholders 
are reimbursed by policyholders’ insurance companies without proof of fault and 
cannot seek extra damages through the justice system, which may introduce a 
perverse incentive to drive less carefully. Non-coincidentally, Landes (1982) finds 
that states with no-fault liability laws have more fatal accidents, holding every-
thing else constant. However, Zador and Lund (1986) update Landes’ study with 
more recent data and find no conclusive evidence that no-fault liability laws lead 
to more fatal accidents. Kochanowski and Young (1985) also arrive at the same 
conclusion. Cummins, Weiss and Phillips (2001) argue that the adoption of no-
fault liability laws can be endogenous in traffic collisions, which could explain 
these different findings. Using the instrumental variable approach, Cummins, 
Weiss and Phillips find that fatal accident rates are higher in states with no-fault 
liability laws, holding everything else constant. Similarly, Cohen and Dehejia 
(2004) find that reductions in accident liability due to no-fault laws have led to 
more traffic fatalities, which is indicative of moral hazard. In this paper, we set out 
to test whether higher auto insurance minimums set by policymakers can effec-
tively over-insure some drivers and lead to an analogous moral hazard effect that 
can manifest itself in higher traffic accidents or fatalities. 
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50 3 DATA 
We set out to estimate a relationship between state traffic fatality rate and auto 
insurance minimums using a balanced panel of 48 American states from 1982 to 
2006. Data availability for some important control variables dictates the chosen 
time period and states. For example, historic average precipitation and tempera-
ture, key control variables, are not currently available for all years for Alaska and 
Hawaii, excluding these two states from our regression analysis. 

The dependent variable in our analysis is the annual traffic fatality rate (total traf-
fic-related fatalities divided by state population). Traffic fatality data were ob-
tained from the Fatal Accident Reporting System (FARS) made available by the 
National Highway Traffic and Safety Administration. Traffic fatalities, as opposed 
to collisions, are chosen for two reasons. First, traffic collisions without fatalities 
tend to be under-reported.2 States with higher insurance minimums tend to have 
more uninsured drivers, further accentuating the underreporting bias.3 Support for 
this argument comes from Ma and Schmit (2000), who find that higher poverty 
rates are associated with more uninsured drivers. Second, not all states measure 
and report traffic collisions in the same way, making it a very unrepresentative and 
unbalanced panel of states. For these reasons, we follow many other studies and 
use traffic fatalities instead of collisions.

The key variable of interest in this study is the mandatory minimum of auto insur-
ance liability coverage that an insured driver must purchase, which varies from 
state to state and over time. There are three categories of minimal liability cover-
age that are required by each state: per person medical liability, per accident med-
ical liability, and per accident property liability. In the event of an accident, the 
insured individual may receive up to the full amount of minimum coverage to help 
pay for medical care and property damages. Since all three minimum categories 
are strongly collinear4 within states, we use the inflation-adjusted per accident 
medical liability amount as the relevant measure of state auto insurance mini-
mums (usually per accident amount is twice of per person amount). 

Table 1 shows the nominal values, expressed in thousands, for the three categories 
of insurance minimums in each state in year 2006. First instituted in 1967, the 
insurance minimums have been increased by policymakers only in ten states dur-
ing the studied time period (1982-2006). Inflation has significantly eroded the real 
value of these insurance minimums over time in most states, making them less 
binding for some drivers.5 At the same time, significant improvements in vehicle 

2 The National Highway Traffic Safety Administration estimates that over 10 million crashes go unreport-
ed each year. Insurance Research Council’s Uninsured Motorists 2014 Edition reports that about 13 percent 
of drivers were uninsured in 2012, with Oklahoma topping the list with 26 percent and Massachusetts at the 
bottom with 4 percent.
3 Consumer Federation of America claims that most uninsured drivers have low incomes and struggle to afford 
the high-priced minimum liability coverage now required by all states, except for New Hampshire.
4 Pairwise correlation is 0.99 between per person and per accident medical liability and 0.63 between per per-
son/accident medical and property liability. 
5 We adjust the nominal value of insurance minimums for inflation using the GDP deflator.
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51and road safety over the years have led to a pronounced general decline in traffic 

fatality rates as well. As can be seen in figure 1, the average real value of per 
accident medical liability minimum and the average state traffic fatality rate have 
both fallen from 1982 to 2006. 

Table 1
State auto insurance minimums in 2006 (in thousands of U.S. dollars)

State Per 
person 
liability

Per 
accident 
liability

Property 
liability

State Per 
person 
liability

Per 
accident 
liability

Property 
liability

Alabama 20 40 10 Montana 25 50 10
Alaska 50 100 25 Nebraska 25 50 25
Arizona 15 30 10 Nevada 15 30 10
Arkansas* 25 50 25 New Hampshire 25 50 25
California 15 30   5 New Jersey 15 30   5
Colorado 25 50 15 New Mexico 25 50 10
Connecticut 20 40 10 New York* 25 50 10
Delaware* 15 30 10 North Carolina 30 60 25
Florida 10 20 10 North Dakota 25 50 25
Georgia* 25 50 25 Ohio 13 25   8
Hawaii 20 40 10 Oklahoma* 25 50 25
Idaho 20 50 15 Oregon 25 50 10
Illinois 20 40 15 Pennsylvania 15 30   5
Indiana 25 50 10 Rhode Island 25 50 25
Iowa 20 40 15 South Carolina* 15 30 10
Kansas 25 50 10 South Dakota 25 50 25
Kentucky 25 50 10 Tennessee 25 50 10
Louisiana 10 20 10 Texas 20 40 15
Maine 50 100 25 Utah* 25 50 15
Maryland 20 40 10 Vermont 25 50 10
Massachusetts* 20 40   5 Virginia 25 50 20
Michigan 20 40 10 Washington 25 50 10
Minnesota* 30 60 10 West Virginia 20 40 10
Mississippi* 25 50 25 Wisconsin 25 50 10
Missouri 25 50 10 Wyoming 25 50 20

* States that changed auto insurance minimums during the 1982-2006 period according to our 
research.

Unsurprisingly then, the scatter plot in figure 2 depicts a statistically significant (at 
the 5% level) and strong positive correlation of 0.93 between fatality rate and auto 
insurance minimums. The significant positive correlation persists even after re-
moving potential outlier observations in the lower, right-hand corner of the graph. 
However, this correlation does not necessarily imply causality as other factors, 
like improving vehicle and road safety, can be responsible for much of the ob-
served decrease in the traffic fatality rate over time. 
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52 Figure 1
Traffic fatality rate and real value of auto insurance minimums over time
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Figure 2
Traffic fatality rates and auto insurance minimums in 48 states (1982-2006)
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53The empirical challenge of detecting the moral hazard effect requires separating 

the trend of declining traffic fatalities due to continual improvements in road and 
vehicle safety from policy-induced changes such as the increase in auto insurance 
minimums. Fortunately, policy-induced changes in auto insurance minimums that 
occurred in ten states during the studied time period can serve as a quasi-experi-
ment, helping with the identification of the causal effect from policy changes. 
Namely, if there is a moral hazard effect, then the states that raised their auto 
insurance minimums should have experienced a higher traffic fatality rate than the 
control group, ceteris paribus. 

Figure 3
Traffic fatality rates fell less in states that raised auto insurance minimums
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Figure 3 shows that the traffic fatality rate typically fell over time, but it fell sig-
nificantly more in states that did not raise their auto insurance minimums than in 
those that did. The difference between the two groups’ fatality rate means is statis-
tically significant at the 5 percent level. As can be seen in the figure, the gap in 
traffic fatalities between the two groups of states widened more in the second half 
of the 1982-2006 period when several states increased their auto insurance mini-
mums. Of course, this figure does not prove that lower auto insurance minimums 
cause an improvement in safety by reducing the moral hazard effect. In fact, one 
could argue that causality might work in the opposite direction: rising traffic 
fatalities may force policymakers to update their auto insurance minimums. How-
ever, we don’t find any evidence in favour of the reverse-causality argument.
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54 Figure 4
Traffic fatality rates and auto insurance minimum increases
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In figure 4, we show the evolution of traffic fatality rates and auto insurance min-
imums (in total nominal value) in the ten states that increased their auto insurance 
minimums during the studied time period. None of the ten states in figure 4 show 
a clear-cut rise in the traffic fatality rate before the increase in state auto insurance 
minimums. In fact, most of the ten states show a downward trend in traffic fatali-
ties over time. It is hard to imagine that policy makers would feel pressured to 
increase the state auto insurance minimums if their traffic fatality rates were fall-
ing rather than rising. In the next section of this paper, we also test for the exoge-
neity of auto insurance minimums and fail to reject it. This result is consistent with 
the findings by Jeziorski, Krasnokutskaya and Ceccariniz (2015), who note that 
the industry’s practice of pricing premiums reflects the probability of an accident 
rather than its severity, implying that the amount of insurance coverage appears to 
be unrelated to risk.

We also have a good theoretical reason to suspect that auto insurance minimums 
are exogenous to the traffic fatality rate or the probability of a deadly accident. 
Unlike insurance premiums, which in theory should reflect the probability of an 
accident, the minimums are typically set to cover the expected expenses in the 
event of an accident. The increase or decrease in the odds of an accident should 
not affect the amount of optimally chosen coverage, which in theory should be 
equal to the value of the insured assets. In other words, auto insurance minimums 
should be exogenous to traffic fatality rates and policy makers probably set the 
auto insurance liability minimums in proportion to potential damages from an 
accident rather than the probability of an accident. The minimums would then be 
proportional to the amount of expected damages, which would probably depend 
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55on per capita wealth or income in a given state. For this reason, the policy-induced 

changes in auto insurance minimums are akin to a quasi-natural experiment, mak-
ing the minimums exogenous to state traffic fatality rates. 

Table 2
Variables and sources

Variable name Variable description Mean 
(std. dev.)

Traffic fatality rate1 Traffic fatalities divided by state population 
measured in thousands.

0.18
(0.06)

Auto insurance 
minimum6

Per accident minimum liability amount  
(in thousands of dollars) adjusted for inflation 
using GDP deflator. 

59.36
(23.53)

Young population share2 Share of people 18-24 years of age in state 
population.

0.11
(0.01)

Old population share2 Share of people 65 and older in state population. 0.12
(0.02)

Minimum drinking age2 Minimum legal drinking age for spirits in years. 20.59
(0.93)

Gasoline price3 Per gallon gasoline price in constant dollars. 1.90
(0.41)

Income per capita4 Real GDP/total population (in thousands). 39.74
(10.38)

Population density5 Total population/square mile of land. 0.17
(0.24)

Alcohol consumption7 Alcohol consumption in gallons per capita for 
state population over the age of 17.

2.39
(0.56)

Precipitation8 Average weighted annual rain and snow fall in 
inches.

3.09
(1.26)

Air temperature8 Average weighted annual air temperature in 
Fahrenheit.

52.50
(7.61)

Speed limit9 Average (rural and urban) speed limit in miles 
per hour.

60.03
(6.15)

Crime rate10 Overall crime rate. 0.05
(0.01)

Primary seatbelt law11 Dummy variable: 1 if state has a primary 
seatbelt law, 0 if otherwise.

0.22
(0.42)

Compulsory insurance12 Dummy variable=1 if state has compulsory 
insurance (0 otherwise).

0.73
(0.44)

No-fault liability12 Dummy variable=1 if state has no-fault liability 
law (0 otherwise).

0.28
(0.45)

1) FARS (2009)
2) Ponicki (2004)
3) EIA (2009)
4) BEA (2009) 
5) U.S. Census Bureau (2009) 
6) �State-by-State Insurability Requirements (2009)

  7) The Beer Institute (2008)
  8) NCDC (2017, 2017a)
  9) IIHS (2017) 
10) Bureau of Justice Statistics (2017) 
11) NHTSA (2009) 
12) Cohen and Dehejia (2004)
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56 In order to isolate the effect of insurance minimums on the traffic fatality rate from 
the confounding factors, this study employs a large and diverse set of control 
variables suggested by previous research.6 The control variables fall into the four 
main categories: economic (income, gasoline price, alcohol consumption), demo-
graphic (age, population density, crime rate), climatic (precipitation, temperature), 
and policy (compulsory, no-fault, speed limit, seatbelt, and legal drinking age 
laws). Variable definitions, sources, and descriptive statistics are shown in table 2. 
In the next section, we develop our empirical model and present the findings. 

4 Empirical Model and Estimates
Analogously to Cohen and Dehejia (2004), we hypothesize that lowering the cost 
of personal accident liability through higher auto insurance minimums may over-
insure some drivers, decreasing their incentives to drive carefully. We expect to 
find that states with policy-induced increases in insurance minimums should 
experience higher traffic fatality rates, holding everything else constant. Several 
assumptions need to hold for the hypothesized moral hazard effect to be observed 
empirically: (1) a sufficient fraction of drivers must be constrained by the mini-
mum coverage, (2) drivers must be aware of their policy parameters, (3) higher 
minimums do not induce too many drivers to become uninsured, and (4) drivers 
respond to changes in coverage. 

It has been reported that about 20 percent of drivers have minimum coverage, 13 
percent are uninsured, and the median jury award for liability cases for vehicular 
accidents is about $20,000 (Lieber, 2012). Considering that the average per person 
liability minimum is about $23,000 (or $46,000 per accident), states with high 
liability minimums may “over-insure” some drivers. These numbers suggest that 
a sizeable increase in auto insurance minimums may constrain a non-trivial per-
centage of drivers, giving some support to the first assumption. 

Regarding our second and fourth assumptions, a study by Dionne, Michaud and 
Dahchour (2013) suggests that changes in insurance premiums do affect some 
policyholders’ driving and learning behavior. These findings imply that sufficient-
ly many drivers are aware of and appear to respond to changes in their policy 
parameters. 

As for the third assumption, it is possible that some drivers may drop their auto 
insurance in response to higher insurance minimums, driving more carefully in 
order to minimize the odds of getting caught driving without coverage. The unin-
sured drivers may introduce a downward bias in the estimate of the moral hazard 
effect, which is likely to be small considering the modest percentage of drivers 
that might be affected by policy-induced increases in auto insurance minimums. 

6 The variables were chosen largely based on the studies by Leigh (2009), Asch and Levy (1990), Nelson, 
Bolen and Kresnow (1998), Derrig et al. (2002), Kahane (2000), Glassbrenner (2005), Beck et al. (2007),  
Sen (2001), Cohen and Einav (2003), Cohen and Dehejia (2004), Pulito and Davies (2009), Friedman, Hede-
ker and Richter (2009), and Yakovlev and Inden (2010). 
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57Regardless of the real-world viability of the aforementioned assumptions, the pa-

per’s moral hazard hypothesis can only be rejected empirically. To test this hy-
pothesis, we estimate the following linear regression model with state and year 
fixed effects:

	 yit = α + yMit + Xit β  + ui + vt + εit .� (1)

Where Yit is the traffic fatality rate, Mit is the auto insurance minimum per accident, 
Xit is a vector of control variables that are discussed in more detail in the data sec-
tion, ui and vt are state and year fixed effects, εit is the error term, while subscripts 
i = 1, …, 50 and t = 1982, …, 2006 represent states and years, respectively. State 
fixed effects help to control for unobserved time-invariant factors such as culture 
and geography, while year fixed effects control for common temporal effects such 
as improving vehicle safety and road conditions. The choice of the fixed-effects 
(within) estimator is supported by the Hausman random effects test, which rejects 
the null of no systematic difference in coefficients with 99.9 percent probability. 
This result implies that the model should be estimated using state fixed effects to 
control for unobserved heterogeneity, a common source of endogeneity bias. 

In the first column of table 3, we report the OLS estimates of the model in equa-
tion (1) with standard errors robust to heteroskedasticity and autocorrelation (i.e. 
clustered standard errors). The coefficient estimates are reported as elasticities 
(calculated at variables’ mean values) for ease of interpretation. The coefficient 
estimate for auto insurance minimum per accident is positive, as expected, and 
statistically significant at the ten percent level. Its elasticity value of 0.096 implies 
that a ten percent increase in the auto insurance minimum amount is associated 
with almost one percent rise in the traffic fatality rate, on average. 

In column two of table 3, we report the OLS estimates of the model in equation 
(1) with Driscoll-Kraay (1998) standard errors that are robust to the general forms 
of autocorrelation, heteroskedasticity, and contemporaneous correlation, which 
have all been detected in our data.7 This regression also yields a statistically sig-
nificant (now at the one percent level) positive coefficient of 0.096 for auto insur-
ance minimum per accident. 

To correct for potential outlier bias we also estimate the model in equation (1) via 
“robust” regression, which is basically a re-weighted OLS. As can be seen in fig-
ure 2, there might be some outliers in the data that may bias the conventional OLS 
estimates.8 The “robust” regression results shown in column three of table 3 yield 
a statistically significant (at the one percent level) and positive elasticity estimate 
of 0.109 for insurance minimums. 

7 A Breusch-Pagan/Cook-Weisburg test indicates the presence of groupwise heteroscedasticity. Arellano-Bond 
and Wooldridge tests indicate the presence of autocorrelation in the residuals. The Pesaran test detects contem-
poraneous correlation. The residuals were also tested for non-stationarity using the Pesaran, Shin W-stat, ADF-
Fisher Chi-square, and PP-Fisher Chi-square tests, all of which rejected the null hypothesis of non-stationarity.
8 According to the Hadi (1992, 1994) outlier test, about 9 percent of our observations could be considered 
as outliers. 
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58 Table 3
Determinants of traffic fatality rates in 48 states (1982-2006)

Estimator
standard error

FE OLS GMM
robustClustered Driscoll-Kraay Weighted

Auto insurance 
minimum

0.096* 0.096*** 0.109***  0.108** 
(0.052) (0.026) (0.026)  (0.051)

Compulsory 
insurance

0.01 0.01 0.019** -0.005
(0.017) (0.012) (0.008) (0.014)

No-fault liability
0.023* 0.023*** 0.023*** 0.013

(0.012) (0.004) (0.006) (0.013)

Primary seatbelt law
-0.009* -0.009*** -0.005** -0.000001

(0.005) (0.003) (0.002)  (0.003)

Speed limit
0.132 0.132** 0.179*** 0.170**

(0.123) (0.059) (0.047) (0.084)
Minimum drinking 
age

0.179 0.179** 0.062 0.242
(0.230) (0.088) (0.117) (0.331)

Alcohol 
consumption

0.766*** 0.766*** 0.765*** 0.610***
(0.093) (0.091) (0.050) (0.109)

Income per capita
0.870*** 0.870*** 0.676*** 0.603***

(0.169) (0.090) (0.076) (0.101)

Gasoline price
0.238 0.238 0.238 -0.234

(0.351) (0.184) (0.181) (0.224)

Population density
-0.053 -0.053* -0.058* -0.070

(0.086) (0.027) (0.035) (0.053)
Young population 
share

0.07 0.07* 0.00737 0.139*
(0.088) (0.036) (0.041) (0.078)

Old population 
share

-0.082 -0.082* -0.044 -0.177**
(0.110) (0.043) (0.048) (0.088)

Crime rate
0.0581 0.0581 0.055** 0.007
(0.044) (0.037) (0.026) (0.036)

Precipitation
-0.085*** -0.085*** -0.078*** -0.087***

(0.019) (0.019) (0.018) (0.020)

Air temperature
-0.125 -0.125 -0.258* -0.008

(0.158) (0.165) (0.151) (0.179)
Lagged dependent 
variable – – –

 0.344***
 (0.051)

R-squared 0.62 0.62 0.95 –
*** Indicates significance at 1%, ** at 5%, and * at 10%. Dependent variable: traffic fatality 
rate. The reported coefficients are elasticities computed as d(lny)/d(lnx) at variables’ means (dum­
mies are treated as continuous variables for calculating the means). All models include state and 
year fixed effects, but their coefficients, along with a constant, are not reported. Due to the lack 
of consistent annual precipitation and temperature data, Alaska and Hawaii are excluded from 
the sample, resulting in 48 contiguous states over 25 years or 1,200 observations. 
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59While the last three regression models have shown encouraging consistency in the 

estimates for auto insurance minimums, they could still suffer from another type 
of endogeneity bias – reverse causality. Fortunately, we have good theoretical and 
empirical reasons to argue that auto insurance minimums are exogenous. As dis-
cussed in more detail in the data section of this paper, economic theory suggests 
that the auto insurance minimums are likely to be set in proportion to the expected 
damages from an accident rather than accident probability, making them exoge-
nous to past traffic fatalities. Similarly, Jeziorski, Krasnokutskaya and Ceccariniz 
(2015) find that the insurance premiums reflect the probability of accidents rather 
than their severity, implying that the damages are unrelated to an individual’s abil-
ity or risk. We also perform a formal empirical test of exogeneity of auto insurance 
minimums in the following regression model, which is estimated via a dynamic 
general method of moments (GMM):

	 ∆Yit = α + ρ ∆Yit–1 + y∆M̑it  + ∆ Xit  β + vt + εit .� (2)

This Arellano and Bond (1991) dynamic GMM model features robust standard 
errors and year dummies (i.e. time fixed effects) because the first-differencing 
procedure removes all time-invariant heterogeneity (i.e. state fixed effects) and 
first-order autocorrelation in the error term.9 According to Roodman (2006), the 
general method of moments (GMM) estimator is well suited for dynamic models 
with small-T and large-N dimensions, heteroskedastic and endogenous error 
structure. Arellano and Bond (1991) and Holtz-Eakin, Newey and Rosen (1988) 
argue that the endogenous variables can sometimes be instrumented with their 
own lagged values as “internal” instruments. Similarly to Jeziorski, Krasnokuts-
kaya and Ceccariniz (2015), we instrument for potentially endogenous insurance 
minimums with their own lagged values in levels (t-2 and deeper). The Sargan/
Hansen test fails to reject the null hypothesis of instrument over-identification (p-
value of 0.64), implying that the chosen instruments are sufficiently correlated 
with the possibly endogenous variables, but uncorrelated with the error term. Fur-
thermore, we fail to reject the null hypothesis (p-value of 0.25) that the auto insur-
ance minimums are exogenous.10 

The GMM model yields a statistically significant (at the five percent level) and 
positive elasticity coefficient of 0.108, which further corroborates our hypothesis 
that higher auto insurance minimums increase the traffic fatality rate (see column 
4 in table 3). While the estimated elasticity coefficients for auto insurance mini-
mums are modest in magnitude (i.e. relatively inelastic) across all four models, 
ranging from 0.096 to 0.109, their impact on the traffic fatality rate is still note-
worthy considering the non-trivial number of deadly collisions that occur every 
year. Our average elasticity estimate of about 0.1 implies that a $6,000 mandated 

9 It is important to point out that the Arellano-Bond test fails to reject (with p-value of 0.23) the null hypoth-
esis of nonexistent second-order autocorrelation in the error term, a required assumption for GMM models.
10 We use a generalized version of the Durbin-Wu-Hausman (DWH) test of the endogeneity of regressors, 
implemented as the Hansen/Sargan/C test statistic in the GMM model developed by Baum, Schaffer and 
Stillman (2003).
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60 increase in the auto insurance per-accident liability minimum is likely to result in 
one extra death from traffic collisions, on average. This mandatory increase in 
coverage comes at a high social cost considering that the median value of a statis-
tical life estimated in the wage-risk studies11 to be about $7 million. A couple of 
recent papers find corroborating evidence of costly moral hazard responses to 
changes in auto insurance coverage for drivers. For example, Jeziorski, Krasno-
kutskaya and Ceccariniz (2015) estimate that a $50 rise in the cost of a claim for 
an average policy reduces the claim probability by roughly a 0.1 percentage point. 
Similarly, Weisburd (2015) estimates that a $100 reduction in accident claim costs 
for drivers results in a 1.7 percentage point increase in the probability of an acci-
dent or, equivalently, a 10 percent increase in auto accidents. These findings show 
that significant social welfare costs can arise due to moral hazard from over-gen-
erous auto insurance coverage.

Looking at all the models in table 3, it is clear that several control variables also 
have significant associative effects on the traffic fatality rate. Namely, alcohol 
consumption and income per capita have relatively large and statistically signifi-
cant positive effects on the traffic fatality rate across all models. The positive coef-
ficient for income per capita is consistent with the idea of driving being a normal 
good: rising real incomes may put more drivers on the road, increasing the prob-
ability of deadly collisions. Precipitation has a significant negative effect on the 
traffic fatality rate across all models. Primary seat belt law is negative and statisti-
cally significant in the first three out of four regression models. In some models, 
the shares of young and old populations appear to have the expected positive and 
negative, respectively, statistically significant relationships with the traffic fatality 
rate. No-fault liability law is positive and statistically significant also in the first 
three out of four regression models, supporting previous findings in the literature 
of possible moral hazard. While compulsory insurance appears statistically sig-
nificant in only one regression model, it has a positive coefficient, which is also 
consistent with the moral hazard hypothesis.

5 CONCLUSION 
This study examines empirically whether higher state auto insurance minimums 
create a moral hazard problem by effectively over-insuring some drivers and low-
ering their incentives to drive more carefully. After controlling for numerous con-
tributing factors and possible endogeneity of auto insurance minimums, we find a 
statistically significant, positive relationship between the traffic fatality rate and 
state auto insurance minimums. This relationship retains its sign and statistical 
significant across all of our regression models. The estimated elasticity coefficient 
for auto insurance liability minimum per accident ranges from 0.096 to 0.109, 
implying that a ten percent increase in auto insurance minimums is associated 
with about one percent increase in the traffic fatality rate, on average. In other 
words, a $6,000 increase in per-accident liability minimum is likely to result in 

11 See Viscusi (2008) for a review of life valuation methods and findings. 
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61one more traffic fatality. With the average value of a statistical life of about $7 

million, this seems like a questionable tradeoff. 

Several American states are currently considering increasing their auto insurance 
minimums given that the dollar amounts have not been indexed to inflation for 
many years and have declined in real value over time. If our estimates are correct, 
higher auto insurance minimums may increase traffic collisions and fatalities and 
reduce social welfare. We also find that no-fault and compulsory insurance laws 
may have significant positive effects on traffic fatalities, which is consistent with 
previous findings. Generally speaking, our findings provide additional evidence 
for the existence of moral hazard in the auto insurance industry.

Disclosure statement 
No potential conflict of interest was reported by the authors.
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