1283 Views
219 Downloads |
Forecasting medical inflation in the European Union using the ARIMA model
Enja Erker
Article | Year: 2024 | Pages: 39 - 56 | Volume: 48 | Issue: 1 Received: June 1, 2023 | Accepted: October 19, 2023 | Published online: March 1, 2024
|
FULL ARTICLE
FIGURES & DATA
REFERENCES
CROSSMARK POLICY
METRICS
LICENCING
PDF
Member state
|
ADF test
|
KPSS test
|
Stationarity
|
Austria
|
0.02*
|
0.10
|
Stationary
|
Belgium
|
0.49
|
0.10
|
Non-stationary
|
Bulgaria
|
0.41
|
0.07
|
Non-stationary
|
Croatia
|
0.01*
|
0.10
|
Stationary
|
Cyprus
|
0.08
|
0.10
|
Non-stationary
|
Czechia
|
0.01*
|
0.10
|
Stationary
|
Denmark
|
0.01*
|
0.10
|
Stationary
|
Estonia
|
0.23
|
0.10
|
Non-stationary
|
Finland
|
0.08
|
0.10
|
Non-stationary
|
France
|
0.05
|
0.10
|
Stationary
|
Germany
|
0.01*
|
0.10
|
Stationary
|
Greece
|
0.28
|
0.80
|
Non-stationary
|
Hungary
|
0.01*
|
0.10
|
Stationary
|
Ireland
|
0.13
|
0.03*
|
Non-stationary
|
Italia
|
0.01*
|
0.10
|
Stationary
|
Latvia
|
0.28
|
0.10
|
Non-stationary
|
Lithuania
|
0.21
|
0.08
|
Non-stationary
|
Luxembourg
|
0.01*
|
0.10
|
Stationary
|
Malta
|
0.28
|
0.10
|
Non-stationary
|
Netherlands
|
0.08
|
0.10
|
Non-stationary
|
Poland
|
0.65
|
0.04*
|
Non-stationary
|
Portugal
|
0.01*
|
0.10
|
Stationary
|
Romania
|
0.01*
|
0.02*
|
Non-stationary
|
Slovakia
|
0.04*
|
0.10
|
Stationary
|
Slovenia
|
0.51
|
0.03*
|
Non-stationary
|
Spain
|
0.01*
|
0.10
|
Stationary
|
Sweden
|
0.07
|
0.10
|
Non-stationary
|
Note: *p < 0.05, ** p < 0.01 and *** p < 0.001.
Member state
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
Jan
|
Feb
|
Average
|
Austria
|
0.68
|
1.02
|
0.12
|
0.91
|
0.69
|
0.77
|
0.43
|
0.89
|
2.00
|
1.86
|
2.12
|
3.34
|
1.23
|
Belgium
|
0.06
|
0.25
|
0.25
|
0.30
|
0.33
|
0.63
|
0.82
|
1.07
|
1.16
|
1.30
|
1.48
|
4.07
|
0.98
|
Bulgaria
|
0.17
|
0.45
|
0.92
|
1.37
|
1.86
|
2.02
|
1.64
|
1.89
|
4.22
|
6.70
|
9.59
|
11.02
|
3.49
|
Croatia
|
0.28
|
1.38
|
2.14
|
2.27
|
2.48
|
3.66
|
5.06
|
5.67
|
6.12
|
6.28
|
6.59
|
8.17
|
4.18
|
Cyprus
|
0.09
|
0.14
|
0.66
|
0.41
|
0.46
|
0.33
|
0.02
|
0.11
|
0.06
|
0.08
|
0.47
|
0.12
|
0.25
|
Czechia
|
0.69
|
0.87
|
0.11
|
0.38
|
0.64
|
0.98
|
0.83
|
1.49
|
0.51
|
1.56
|
2.19
|
2.86
|
1.09
|
Denmark
|
0.72
|
0.69
|
0.43
|
0.12
|
1.35
|
1.03
|
1.02
|
0.69
|
1.71
|
1.92
|
2.67
|
2.71
|
1.25
|
Estonia
|
0.67
|
1.31
|
1.15
|
2.03
|
2.57
|
3.05
|
3.21
|
4.93
|
6.18
|
5.65
|
6.83
|
7.22
|
3.73
|
Finland
|
1.30
|
1.22
|
1.52
|
2.00
|
0.40
|
0.68
|
0.60
|
0.92
|
0.76
|
0.77
|
0.84
|
0.29
|
0.94
|
France
|
0.42
|
0.82
|
1.19
|
0.95
|
1.14
|
0.66
|
0.17
|
1.06
|
1.58
|
1.01
|
1.15
|
1.58
|
0.98
|
Germany
|
0.01
|
0.18
|
0.06
|
0.03
|
0.45
|
0.45
|
1.99
|
2.41
|
2.60
|
2.64
|
2.71
|
2.73
|
1.35
|
Greece
|
0.38
|
0.59
|
0.15
|
0.87
|
1.59
|
2.00
|
2.17
|
3.01
|
3.51
|
3.33
|
4.07
|
4.88
|
2.21
|
Hungary
|
0.20
|
0.00
|
0.51
|
1.26
|
2.17
|
3.48
|
5.25
|
6.95
|
9.34
|
11.16
|
12.75
|
12.64
|
5.48
|
Ireland
|
0.11
|
0.59
|
0.64
|
0.38
|
0.38
|
0.73
|
0.34
|
0.01
|
0.06
|
0.14
|
0.13
|
0.01
|
0.29
|
Italia
|
0.04
|
0.16
|
0.08
|
0.15
|
0.03
|
0.18
|
0.26
|
0.43
|
0.52
|
0.63
|
0.37
|
0.81
|
0.30
|
Latvia
|
0.08
|
1.29
|
1.72
|
2.55
|
2.88
|
3.23
|
3.19
|
3.94
|
4.76
|
4.66
|
5.91
|
6.29
|
3.38
|
Lithuania
|
0.11
|
0.04
|
0.72
|
1.40
|
1.76
|
2.23
|
2.75
|
2.59
|
3.70
|
3.39
|
4.58
|
3.62
|
2.24
|
Luxembourg
|
0.83
|
0.64
|
2.47
|
3.04
|
3.27
|
3.27
|
3.57
|
4.58
|
4.22
|
4.59
|
5.21
|
5.65
|
3.45
|
Malta
|
0.46
|
0.07
|
0.32
|
0.70
|
0.25
|
0.45
|
0.93
|
1.49
|
1.93
|
1.93
|
2.39
|
2.11
|
1.09
|
Netherlands
|
0.40
|
0.04
|
0.37
|
0.32
|
0.14
|
0.18
|
0.61
|
0.40
|
0.91
|
0.47
|
1.10
|
3.66
|
0.72
|
Poland
|
0.51
|
1.34
|
1.97
|
2.72
|
2.89
|
3.06
|
3.09
|
3.40
|
4.21
|
5.01
|
5.06
|
6.67
|
3.33
|
Portugal
|
0.37
|
0.12
|
0.04
|
0.17
|
5.05
|
5.45
|
5.34
|
5.18
|
5.46
|
4.47
|
4.39
|
4.23
|
3.36
|
Romania
|
0.51
|
1.45
|
2.97
|
4.30
|
6.11
|
7.25
|
8.33
|
9.55
|
11.11
|
12.84
|
14.37
|
15.64
|
7.87
|
Slovakia
|
0.48
|
0.92
|
1.56
|
2.89
|
2.60
|
3.25
|
4.20
|
5.20
|
5.03
|
6.22
|
7.28
|
7.68
|
3.94
|
Slovenia
|
0.95
|
0.67
|
0.28
|
0.52
|
0.48
|
0.09
|
1.97
|
2.00
|
1.44
|
3.95
|
5.50
|
3.75
|
1.80
|
Spain
|
0.32
|
0.20
|
0.11
|
0.07
|
0.50
|
0.41
|
0.57
|
0.80
|
0.81
|
1.18
|
1.05
|
1.05
|
0.59
|
Sweden
|
0.45
|
1.54
|
2.23
|
2.92
|
3.16
|
2.52
|
4.01
|
4.36
|
3.95
|
4.24
|
5.33
|
6.08
|
3.40
|
Average
|
0.42
|
0.66
|
0.91
|
1.30
|
1.70
|
1.93
|
2.31
|
2.78
|
3.25
|
3.63
|
4.30
|
4.77
|
2.33
|
Atkeson, A. and Ohanian, L. E., 2001. Are Phillips curves useful for forecasting inflation? Federal Reserve Bank of Minneapolis Quarterly Review, 25(1), pp. 2-11 [ CrossRef]
Basrak, B., 2022. Essentials of time series. Zagreb: Department of Mathematics, University of Zagreb.
Bikker, J. A., 1998. Inflation forecasting for aggregates of the EU-7 and EU-14 with Bayesian VAR models. Journal of Forecasting, 17(2), pp. 147-165 [ CrossRef]
Borger, C., Rutherford, T. F. and Won, G. Y., 2008. Projecting long term medical spending growth. Journal of Health Economics, 27(1), pp. 69-88 [ CrossRef]
Cao, Q., Ewing, B. T. and Thompson, M. A., 2012. Forecasting medical cost inflation rates: model comparison approach. Decision Support Systems, 53(1), pp. 154-160 [ CrossRef]
Choudhary, M. A. and Haider, A., 2012. Neural network models for inflation forecasting: an appraisal. Applied Economics, 44(20), pp. 2631-2635 [ CrossRef]
Culyer, A. and Newhouse, J., 2003. Handbook of health economics. Amsterdam: Elsevier B. V.
DePamphilis, D. M., 1976. Forecasting medical care expenses. Business Economics, 11(4), pp. 21-31.
Dular, B., 2010. Medicinska inflacija: področje zdravil. Master thesis. Ljubljana: Ekonomska fakulteta, Univerza v Ljubljani.
ECB, 2023. Two per cent inflation target. Eurosystem, 26 May 2023.
Ewing, B. T., Piette, M. J. and Payne, J. E., 2003. Forecasting medical net discount rates. Journal of Risk and Insurance, 70(1), pp. 85-95 [ CrossRef]
Faust, J. and Wright, J. H., 2012. Forecasting inflation. Handbook of Economic Forecasting, 2 (Part A), pp. 1-18 [ CrossRef]
Groen, J. J. J., Paap, R. and Ravazzolo, F., 2013. Real-time inflation forecasting in a changing world. Journal of Business & Economic Statistics, 31(1), pp. 29-44 [ CrossRef]
Hamilton, J. D., 1994. Time series analysis. New Jersey: Princeton University Press.
Karadžić, V. and Pejović, B., 2021. Inflation Forecasting in the Western Balkans and EU: A Comparison of Holt-Winters, ARIMA and NNAR Models. Amfiteatru Econ, 23, pp. 517-532 [ CrossRef]
Marcellino, M., Stock, J. H. and Watson, M. W., 2006. A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series. Journal of Econometrics, 135(1-2), pp. 499-526 [ CrossRef]
Morgan, S., 2002. Quantifying components of drug expenditure inflation: The British Columbia seniors’ drug benefit plan. HSR: Health Services Research, 37(5), pp. 1243-1266 [ CrossRef]
Nakamura, E., 2005. Inflation forecasting using a neural networks. Economics Letters, 86(3), pp. 373-378 [ CrossRef]
Rakić, D., 2023. European monetary policy. European Parliament, 26 May 2023.
Stock, J. H. and Watson, M. W., 1999. Forecasting inflation. Journal of Monetary Economics, 44(2), pp. 293-335 [ CrossRef]
Stock, J. H. and Watson, M. W., 2010. Modeling inflation after the crisis. NBER Working paper, No. 16488 [ CrossRef]
Wearing, H. J., 2010. Spectral Analysis in R. Hamilton: McMaster University.
|
|
March, 2024 I/2024
|